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The MAPK (mitogen-activated protein kinase) pathway is one
of the most important and intensively studied signalling pathways.
It is at the heart of a molecular-signalling network that governs the
growth, proliferation, differentiation and survival of many, if not
all, cell types. It is de-regulated in various diseases, ranging from
cancer to immunological, inflammatory and degenerative syn-
dromes, and thus represents an important drug target. Over recent
years, the computational or mathematical modelling of biological
systems has become increasingly valuable, and there is now a wide
variety of mathematical models of the MAPK pathway which have
led to some novel insights and predictions as to how this sys-

tem functions. In the present review we give an overview of the
processes involved in modelling a biological system using
the popular approach of ordinary differential equations. Focusing
on the MAPK pathway, we introduce the features and functions
of the pathway itself before comparing the available models and
describing what new biological insights they have led to.
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THE GENERAL STRUCTURE OF MAPK PATHWAYS

In molecular biology the MAPK (mitogen-activated protein
kinase) pathway is considered to be a paradigm for signal trans-
duction, as it occupies a central role in key cellular processes
and is evolutionarily conserved. Various manifestations of the
MAPK pathway are found in all eukaryotic cells so far examined
and have been studied extensively in a multitude of organisms,
ranging from yeast to humans. On the basis of the substantial body
of data available in the literature, this pathway has frequently been
the system of choice for computational modelling of biological
signal transduction over the last decade.

The term ‘MAPK pathway’ refers to a module of three kinases
which are activated by sequentially phosphorylating each other in
response to a diverse range of stimuli, such as cytokines, growth
factors, neurotransmitters, cellular stress and cell adherence.
Accordingly, the pathway plays a pivotal role in many key cellular
processes, ranging from growth control in all its variations, cell
differentiation and survival to cellular adaptation to chemical and
physical stress (for reviews, see [1–3]).

The MAPK pathway employs one of the most generic signall-
ing designs found in biological signal transduction, namely that
of a cycle formed by a kinase phosphorylating a target protein
and an opposing phosphatase that is in charge of dephosphoryl-
ating the target (Figure 1). This type of protein phosphorylation
presents a fundamental mechanism by which the activities of
numerous enzymes, receptors, transporters, docking and scaffold-
ing proteins are regulated.

The general layout of the MAPK pathway consists of three
kinase/phosphatase cycles built into a three-tiered cascade, con-
sisting of a MAPK, which is activated via phosphorylation by a
MAPKK/MKK (MAPK kinase), which in turn is phosphorylated
by a MAPKKK/MKKK (MAPKK kinase) (Figure 2). MAPKs are
deactivated by a family of phosphatases termed MKPs (MAPK
phosphatases) [4].

Most activators of the MAPK pathway initiate signalling by
activating receptors in the cell membrane, which assemble into
receptor signalling complexes and activate a MAPKKK typically
through a small GTPase. Signal transduction within the MAPK-
pathway module appears to be fairly specific and is often perceived
as a pathway with a linear structure. The number of known MAPK
effectors, however, is very large and diverse, including mainly
transcription factors, protein kinases and cytoskeletal proteins.
Upon activation, MAPK can translocate from the cytoplasm
to the nucleus, where it regulates gene transcription through
affecting chromatin structure and modifying the activity of tran-
scription factors [5]. Eukaryotic cells contain at least 12 different
MAPKKKs, seven MAPKKs and eight MAPKs, which can be
attributed to at least four functionally distinct MAPK modules.
MAPK modules have evolved by gene duplication, and several
closely related modules, delivering specific biological responses,
are co-expressed in a particular cell [2]. Currently it is not entirely
clear exactly to what extent kinases of different MAPK modules
are specific within their module or whether they are able to cross-
talk within other MAPK modules or with other targets [3,6].
However, the fact that only relatively few MAPKs receive and
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Figure 1 Kinase/phosphatase signalling reaction

A phospho group is transferred from a nucleotide to a serine, threonine or tyrosine residue
of a target protein (T). The reaction is catalysed by a kinase. The phosphorylated target pro-
tein (T–P) is in turn dephosphorylated by a phosphatase to complete the cycle. Phosphorylation
of a protein often entails conformational changes that modulate the function of the protein. Phos-
phorylation of MEK, for example, activates the kinase domain of the enzyme. MEK then catalyses
the phosphorylation and, as a consequence thereof, activation of MAPK.

Figure 2 General structure of the three-tiered cascade of the MAPK pathway

A signal is propagated along this cascade by sequential phosphorylation as described in the
text.

integrate a plethora of extracellular stimuli to control a widely
diverse range of cellular processes implies that considerable
versatility and specificity is built into MAPK signalling. Some
of the mechanisms which explain how specificity is achieved in
MAPK signalling have recently come to light:

(1) The duration and amplitude of MAPK phosphorylation is
critical for the control of distinctive processes, such as pro-
liferation or differentiation, in PC12 cells [7] or the activ-
ation of c-Fos [8].

(2) Specific binding interactions, mediated by the CD (common
docking) domain on MAPKs and scaffolds such as JIP
[JNK (c-Jun N-terminal kinase)-interacting protein], KSR
(kinase suppressor of Ras) or MP1 {MEK [MAPK/ERK
(extracellular-signal-regulated protein kinase) kinase] partner
1}, tether several components of a MAPK module into a
protein complex [9,10].

(3) Cross-talk with other signalling pathways could modulate
MAPK signalling; examples including regulation of the
serine/threonine-protein kinase Raf by PKA (cAMP-activ-
ated protein kinase) and PDE4 (phosphodiesterase 4) by ERK
[11].

Figure 3 Structure of the ERK pathway

Upon ligand binding, RTK autophosphorylates (phosphates are shown as red circles) on tyrosine
residues, which serve as docking sites for adaptor and signalling molecules. Ras and Rap1
are activated by the recruitment of guanosine-nucleotide exchange factors (SOS, C3G) via
adaptor proteins (Shc and Grb2; Crk). Ras can activate Raf-1 and B-Raf; Rap1 presumably
can activate B-Raf. Raf proteins phosphorylate and activate MEK-1/2, which in turn activate
ERK-1/2 (indicated by black arrows). Negative-feedback loops (indicated by red lines) include
the induction of MKPs by ERK as well as the inhibitory phosphorylation of Raf-1 and SOS.

THE ERK/MAPK PATHWAY

In the following we will focus on the Raf/MEK/ERK pathway,
because the majority of computational MAPK models address
this particular MAPK module. Signal transduction along the Raf/
MEK/ERK pathway (Figure 3) begins with the activation of the
small GTPases Ras (and possibly Rap) by receptor tyrosine
kinases, G-protein-coupled receptors and/or integrins [12]. These
membrane proteins assemble large signalling complexes upon
activation, which recruit and activate Ras proteins by inducing
the exchange of Ras-bound GDP with GTP, converting Ras into
its activated conformation. This process is mediated by the inter-
action of Ras with GDP/GTP-exchange factors, such as SOS
(son of sevenless). De-activation of Ras, on the other hand, is
controlled by GAPs (GTPase-activating proteins), which signifi-
cantly enhance the otherwise very low GTPase activity of Ras
and thus effectively enhance the hydrolysis of GTP to GDP [13].
Upon activation, the small G-proteins recruit the MKKKs
c-Raf (and, if present, A- and B-Raf) to the plasma membrane,
where Raf is activated in a complicated, only partially understood,
process that involves binding to Ras, phosphorylation and changes
in conformation and protein interactions [12]. Raf then activates
MEK-1/2 by phosphorylation of two serine residues. MEKs gen-
erally recognize only specific MAPKs as substrates. MEK-1/2
phosphorylates ERK-1/2 at threonine and tyrosine residues in a
‘TEY’ motif within its activation loop. This dual phosphorylation
is correlated with ERK-1/2 activity and can be used as a measure-
ment for the indirect quantification of ERK activation [14]. ERK
is a serine/threonine kinase. Activated ERK can phosphorylate
over 80 substrates in the cytoplasm and the nucleus. It can
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regulate gene expression by directly phosphorylating transcription
factors such as Ets, Elk, and Myc, or indirectly by targeting sub-
strates such as p90-RSK (ribosomal S6 kinase) family kinases,
which can modify transcription factors and histones [15]. The term
MAPK was originally synonymous with ERK, but is increasingly
used to indicate the superfamily of different MAPKs. The latter
usage is adopted in the text below.

COMPUTATIONAL MODELLING

Systems biology is concerned with the study of biological systems
in terms of their underlying network structure rather than simply
their individual molecular components. A biological system can
be anything from a simple biochemical reaction cycle, to a gene
regulatory network or signal transduction pathway, to a cell, tissue
or an entire organism. At the heart of systems biology is math-
ematical modelling – the process of translating a biological system
into a mathematical model for subsequent computer simulation
and analysis. In order to be useful and applicable to biological
questions, models have to faithfully describe the biological sys-
tem and be able to make predictions about its behaviour. Thus,
while the basis of a model is the topological representation of its
components and their links, it is the description of the biological
system’s dynamic behaviour which equips the model with
predictive power [16]. However, it is important to emphasize that a
model is not a real or exact representation of the biological system;
rather, it is a simplified description to assist in analysis and to help
us to better understand the real world. A mathematical model
can be used to generate new insights, make testable predictions,
identify gaps in our biochemical knowledge, test conditions
that may be difficult to study in the laboratory and help identify
what is right and wrong with our hypotheses; for example, could
the proposed mechanism give the observed results? Ultimately the
purpose of a model is to increase our understanding of the real
biological system, to identify the key components and processes
and to predict biological behaviour, such as what effect a
particular drug will have on the system, or which components
need to be disturbed for the system to behave in a specific way.

ODEs (ORDINARY DIFFERENTIAL EQUATIONS)

One of the most commonly used approaches to modelling bio-
logical systems is that of ODEs. The technical definition of a dif-
ferential equation is an equation involving one or more unknown
functions and their derivatives. Essentially, a differential equation
describes how a property of interest, such as [A] – the concen-
tration of A, changes over time; this is usually expressed by
describing how the rate of change of the concentration is related
to the concentration at that moment. For example, consider the
simple reaction below which depicts the decay (or conversion) of
A into B:

A
k=2−→ B (1)

This reaction is a plain uncatalysed reaction that can be modelled
using Mass Action kinetics; k represents the rate constant of the
reaction which, in this example, is equal to 2 mM/s. Therefore,
the reaction proceeds at the following rate:

v = k[A] = 2[A] (2)

As can be seen, the rate of the reaction (v) is dependent on [A] –
the greater the value of [A], the higher the rate will be, and
therefore the faster A will be consumed and the faster B will be

produced. From the above equations it is relatively straightforward
to construct differential equations representing the rate of change
in [A] and [B] over time:

d[A]/dt = − k[A]; d[B]/dt = k[A] (3)

In order to simulate the above reaction we also need to know the
initial (time zero) values of [A] and [B], which in this example
are set to be equal to 5 and 0 mM respectively. Simulation uses
numerical methods to solve the differential equations and
approximate the change in concentration of all the species in
a system over time. One of the simplest methods of numerical
integration is Euler’s method, the basic idea of which is to ap-
proximate a curve with a series of straight lines tangential to
the curve. The rate of change is the same as the slope of a line
drawn as a tangent to the curve at that time; therefore, a series
of these tangent lines can be used to follow the function over
time. Euler’s method is a point–slope type method, since it uses
an initial concentration (the point) and a differential equation (the
slope) to monitor a species concentration over time. In practice
this method involves using this initial slope for a very small finite
step-size (�t) in the time direction. The method is then repeated
for another step size using the result from the previous step as
the new starting point. For example, the simple reaction above
(eqn 1) was simulated using Euler’s method over two time steps
(�t) of 0.01 s; the calculations used to compute [A] at these two
time points are shown below (the extension of this example to
longer periods of times is simple):

[A(t + �t)] = [A(t)] − k[A(t)]�t
�t = 0.01
k = 2
[A(0)] = 5
[A(0.01)] = 5 − (2 × 5 × 0.01) = 4.9
[A(0.02)] = 4.9 − (2 × 4.9 × 0.01) = 4.802 (4)

Euler’s method described above is a very basic method of
numerical integration. However, there are many more advanced
methods, such as the Runge-Kutta, Rosenbrock and Richardson
extrapolation; for more information on the different methods of
numerical integration, see [17]. Furthermore, although the above
example reaction (eqn 1) is both small and simple, differential
equations can easily be used to model large biological systems
involving many more species and reactions as well as more
complex reaction mechanisms such as those obeying Michaelis-
Menten kinetics. It is also noteworthy that, when modelling a
system comprising several biochemical species, each represented
by a differential equation, ODE methods require simultaneous
solving of all the differential equations that represent the system.

THE MODELLING PROCESS

One way to view the actual process of modelling the behaviour of
a biological system is to consider it as five distinct steps (Figure 4).

Step 1: system delimitation

This step involves selecting the biological system to be modelled,
e.g. the EGF (epidermal growth factor)- or NGF (nerve growth
factor)-activated ERK cascade. More importantly, it also includes
identifying the biological question the model aims to answer,
e.g. how do EGF and NGF produce differing responses in ERK
activation?

c© 2005 Biochemical Society



252 R. J. Orton and others

Figure 4 The five steps of modelling

This diagram depicts the five steps involved in modelling a biological system. The first step is identifying the biological system to model, followed by actually defining the model to represent the
system, simulating the model and validating the simulation results. If the model is valid, it can be analysed further; if it is not, the definition step is revisited, where the model is checked for various
types of errors. For more information on each of the steps, see the text.

Step 2: definition

This is the key step in the modelling process and is by no means
trivial. It involves defining the model to represent the biological
system of interest. Essentially, this involves drawing a detailed
topological chart of the system that shows all the species (e.g.
proteins) involved, what reactions they can participate in and
where. The kinetic types for each reaction then need to be defined
and the parameter data (e.g. rate constants and initial concen-
trations) assigned to give a set of detailed kinetic reactions. This
definition step can involve exhaustive searches of the scientific
literature to see what is already known about the system and
what parameter data are already available, as well as performing
laboratory experiments to provide data or the use of computational
techniques to estimate missing parameters (see, for example,
[18]). It is important to note that many biological processes are
very complex and not fully understood. Therefore defining a
model often involves making simplifying assumptions that reduce
complex and poorly understood processes into simpler ones that
can still represent the biological processes well enough to explain
the observed data.

Step 3: simulation

After the model has been defined, the next step is to translate the
kinetic reactions into a set of differential equations that describe
how the concentration of each species in the system changes over
time; this set of differential equations is then simulated (or solved)
over a desired period of time. This is a relatively straightforward
step, as there are many software tools available for the generation
and simulation of models of biological systems that are based on
differential equations (see below for more details on simulation
tools).

Step 4: validation

Simulating a model typically returns a table of data or a curve
showing how each species’ concentration varies over time. These
data must then be validated against available experimental data.
If the model behaves as the experimental data suggest, then the
model can be analysed further. If it does not, then the definition
step must be revisited, where the model is checked for errors,
such as incorrect kinetics or parameter data, over-simplifications
of processes and perhaps missing components. In essence, this
is a ‘debugging’ loop involving model definition, simulation and
validation, where the model is refined in order to obtain behaviour
which conforms with experimental observations. Sometimes the
refinement already reveals useful information about the system.
For instance, refining the mathematical model of STAT5 (signal
transduction and activator of transcription 5) phosphorylation in
response to erythropoetin-receptor stimulation uncovered the fact
that the model could capture the experimental kinetics of STAT5
phosphorylation when a time delay was introduced to account

for the shuttling of STAT5 between the nucleus and cytosol. This
indicated that STAT5 cycles between the nucleus and cytosol,
a phenomenon which subsequently was proven experimentally
[19]. The validation step is crucial if a reliable model is to be
generated; if the model’s results do not match known biology, we
cannot trust predictions about unknown biology.

Step 5: analysis

After the model has been validated, it can be analysed and
the simulation results interpreted. Analysis can come in various
forms, from the simple examination of the species’ concentration
graphs to more complex statistical analyses. Sensitivity analysis
is a commonly used approach that studies the response of system
variables to changes in parameter values, and can therefore be used
to identify the key reactions and species, as well as monitoring
how robust a model is. Essentially, sensitivity analysis works by
varying the data for a parameter by a small amount and analysing
what effect this has on a specific system variable, such as the peak
height or duration of the phosphorylated ERK signal; a small
change to a key parameter datum is likely to have a large effect on
the system variable. Different parameters can have widely differ-
ent sensitivities, and the sensitivity of a specific parameter can
also vary depending on which system variable is considered.
On the other hand, sensitivity analysis can also be used to esti-
mate the impact of uncertainty in parameters on system variables.
Robustness is a very important factor in biological systems, as
it allows a system to absorb fairly large perturbations and still
function reasonably well; this is because the functionally import-
ant behaviour of a system has a certain degree of resilience
to damage. If a system variable has a low sensitivity with respect to
a parameter, it is robust to alterations in that parameter, however
caused. The structural robustness of a model can also be analysed
by monitoring how it performs when parts of it are removed;
for example, how does the system behave if a specific species,
reaction or entire pathway is removed. This can be useful, because
there is often redundancy in biological systems where multiple
pathways are available for the production or activation of a certain
protein. Overall, the analysis step aims to generate new predictions
and hypotheses about biological processes that were not known
or unproven before, thus increasing our overall understanding of
the system itself.

COMPUTATIONAL TOOLS

Currently, there a number of software tools available for the simu-
lation and analysis of differential-equation-based models of
biological systems, such as Gepasi [20], E-CELL [21], Virtual
Cell [22], GENESIS [23] combined with Kinetikit [24], Jarnac
combined with JDesigner [25], Mathematica (Wolfram Research;
http://www.wolfram.com/) and Matlab (Mathworks; www.
mathworks.com) (for a recent review of simulation tools, see

c© 2005 Biochemical Society



Modelling of the tyrosine-kinase-activated MAPK pathway 253

Figure 5 Timeline of ERK models

This diagram is a timeline of mathematical models that, in some way, incorporate the ERK cascade. Models are represented as ovals labelled with the name of the first author and located above the
year in which they were published. White ovals represent models of the core ERK cascade, whereas grey ovals represent larger models generally, including growth-factor receptors, adaptor proteins
as well as the ERK cascade itself. Models highlighted in black are the models we have selected for discussion in detail below (for brevity, only the first author is named). 1996: Huang [29]; 1997:
Burack [30], Ferrell [31]; 1998: Ferrell [32]; 1999: Bhalla [24], Kholodenko [60]; 2000: Brightman [35], Kholodenko [34], Levchenko: [38]; 2001: Asthagiri [40], González [88]; 2002: Bhalla [33],
Moehren [41], Schoeberl [42], Shvartsman [36], Somsen [39], Swain [43]; 2003: Aksan [44], Hatakeyama [46], Hendriks [47], Resat [48], Bluthgen [45], Cho [89], Xiong [49]; 2004: Maly [37],
Markevich [51], Oliveira [78], Qiu [52], Yamada [53], Chapman [90], Markevich [50]; 2005: Aksan [91], Perez-Jimenez [92], Oney [93], Sasagawa [54].

[26]). The majority of these tools have a graphical interface that
permits the user to enter the biochemical reactions and kinetic
constants, which the tool then uses to automatically generate the
corresponding ODEs and simulate the model. Some have a num-
ber of advanced features to visualize and analyse models, display
simulation results and also estimate missing parameter data.
Furthermore, the majority of tools now support SBML (Systems
Biology Markup Language; www.sbml.org) [27], which is con-
cerned with introducing a standard representation of models of
biological systems. This enables models to be shared, evaluated
and developed co-operatively, as well as enabling the use of
multiple tools without having to rewrite models for each tool;
a full list of SBML-compatible modelling tools is available from
the SBML website (www.sbml.org). A recommended website
for the novice is the pathway model repository of the Silicon
Cell project (http://www.jjj.bio.vu.nl/index.html; [28]). Via an
interactive webpage, pathway models can be viewed and the
effects of changes in kinetic parameters can be simulated.

ERK MODELS

The ERK cascade is one of the most important cell-signalling
pathways and has been the subject of intensive study in the labora-
tory and, more recently, through mathematical-modelling tech-
niques. Early mathematical models of the ERK cascade focused
on investigating the properties and behaviour of the core cascade
itself. The first model was published in 1996 by Huang and Ferrell
[29] and showed that the ERK cascade exhibited ultrasensitivity,
i.e. a non-linear sigmoid activation curve, with the degree of
ultrasensitivity increasing as one moves down the cascade. This
was quickly followed by two models in 1997 [30,31] that showed
that the activating dual phosphorylation of ERK itself was ac-
complished via a two-collision, distributive mechanism whereby
MEK phosphorylates one site, dissociates, and then has to rebind
to phosphorylate the second site. This generates a pool of largely
singly phosphorylated, i.e. inactive, ERK molecules, which ap-
pears as a gentle response curve. When enough singly phosphoryl-
ated ERK molecules have accumulated, most further phos-
phorylation events produce doubly phosphorylated, i.e. active,
ERK, causing the slope of the activation curve to increase
sharply and steeply. This provided a mechanistic basis for the
ultrasensitivity of ERK activation and explained how ERK can

convert graded inputs into switch-like outputs [31]. Then in 1998,
Ferrell and Machleder [32], using Xenopus oocytes, showed that,
because of ultrasensitivity, ERK is activated essentially in an all-
or-none fashion in individual cells when they are treated with
increasing concentrations of progesterone. Thus the apparently
graded concentration-dependent response curve observed when
a whole cell population was analysed was actually composed of
increasing numbers of responders compared with non-responders
on the level of the individual cells. Over the past decade, an
ever-increasing number of models of the ERK cascade have been
developed, growing in both size and complexity through the
years. Models now routinely incorporate growth-factor receptors
and the plethora of adaptor proteins that can bind to them and
subsequently activate the ERK cascade. Currently, there are over
30 mathematical models that in some way incorporate the ERK
cascade (Figure 5). These models have been used to investigate
various aspects of the biological behaviour of this system, such
as bistable feedback loops [24,33], oscillations [34], feedback
inhibition [35], autocrine loops [36,37], scaffold proteins [38,39],
feedback effects [40], temperature-dependence [41], receptor
internalization [42], signal specificity [43], receptor expression
[44], robustness [45], cross-talk [46], receptor trafficking [47,48],
memory [49], bistability and hysteresis [50], Ras activation [51],
receptor regeneration [52], receptor comparison [53] and temporal
dynamics [54] (for a recent review of the relationships between
some of these ERK models, see [55], or, for more general reviews
of models of cell-signalling pathways, see [56–58]).

The most common growth factor receptor that is currently
incorporated into models of the ERK cascade is the EGFR (EGF
receptor) (for a recent review of models of the EGFR system itself,
see [59]). This is because the EGFR system has been well-studied,
is present at substantial levels in various cell types, and good anti-
bodies and molecular reagents are widely available, enabling a
range of quantitative studies to be performed. We have selected
three popular models of the ERK cascade encompassing the
EGFR system for discussion in detail below; we review what each
model considers and, more importantly, what biological insights
and predictions they have led to. Our selection of models is a good
representation of the existing models; they are spread over the
timeline, are ODE-based and represent the same biological system
and are therefore directly comparable (additional information on
the models, including links to simulation files, is available at
http://www.brc.dcs.gla.ac.uk/∼rorton/mapk/).
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Figure 6 Kholodenko et al. [60] model diagram

This schematic representation of a model of EGFR signalling mediated by adaptor and target
proteins is taken from Figure 1 of [60] and is reproduced with the permission of the American
Society for Biochemistry and Molecular Biology. c© 1999.

Model 1: Kholodenko et al. [60]

In 1999, Kholodenko et al. [60] developed an ODE-based math-
ematical model of the EGFR signalling network to investigate
the short-term pattern of cellular responses to EGF in isolated
rat hepatocytes. The model consists of 25 reactions involving 23
different species (Figure 6) and includes three adaptor proteins
that can directly interact with phosphotyrosine residues on
EGFR [namely Shc (Src homology and collagen homology),
Grb2 (growth-factor-receptor-bound protein 2) and PLCγ (phos-
pholipase Cγ )]. The kinetic parameters in the model were based
on the scientific literature and/or derived from basic physical-
chemical quantities. In order to effectively validate the model
before analysis, a number of ‘wet’ laboratory experiments were
performed such as time courses of EGFR phosphorylation and
EGF-induced tyrosine phosphorylation of adaptor proteins. The
simulation was then compared with these data to show that
the model gives a good fit to the experimentally observed time
courses.

Analysis of the model showed that the rapid, and short-lived,
pattern of EGFR phosphorylation can be explained by the fact that
bound adaptor proteins protect receptor phosphotyrosine residues
against dephosphorylation by tonically active phosphatases, rather
than having to invoke the activation of tyrosine phosphatases by
the receptor [61]. The protection of phosphotyrosine residues
from dephosphorylation is transient, as bound adaptors turn over
and allow dephosphorylation of receptors. This kinetic model also
explains why the levels of phosphorylated adaptors such as Shc,
which becomes phosphorylated when recruited to the receptor,
stay high even when receptor phosphorylation already has

declined. Sensitivity analysis of the model showed that the
dynamics of the EGFR signalling pathway appeared to be robust
to significant changes in many of the rate constants of the pro-
tein interactions involved. Interestingly, however, the time course
of phosphorylation/activation responses to EGF appeared to be
more sensitive to variations in the relative concentrations of
adaptor proteins than to most variations of the kinetic constants.
In particular, the Shc/Grb2 ratio was suggested to be an important
controlling factor of the kinetics of the EGFR signalling response.
This finding can be explained by the competition between ad-
aptor molecules during the formation of multiprotein signalling
complexes. It also highlights the fact that changes in the ex-
pression levels of adaptor proteins are potent modulators of
EGFR signalling, providing a rational basis for the observation
that many adaptor proteins, when overexpressed, or stabilized
through mutations, can usurp the EGFR mitogenic signalling
pathways efficiently and act as oncogenes. Obviously, this finding
also has implications for normal physiology, because various cell
types and also cells in different functional states can show con-
siderable variation in the abundance of signalling proteins.

Technically this model does not include the core ERK cascade
of Raf, MEK and ERK in its description, as it only goes down as far
as the Ras guanine-nucleotide exchange factor SOS. However, this
model was a pacemaker for the field in several ways. It included
the feedback between theoretical prediction and experimental
validation, which now is deemed essential for modern systems
biology. It also was one of the first models to incorporate the
EGFR with its associated adaptor proteins, and it does predict
a transient recruitment of SOS to EGFR at the plasma mem-
brane where Ras is located. This transient recruitment of SOS is
therefore predicted to give rise to a transient activation of Ras
and the ERK cascade, as expected for an EGF response. No
wonder, then, that this model has been used as a basis for many
other models of the EGFR system which do include the core ERK
cascade (see, for example [42,46]).

Model 2: Brightman and Fell [35]

In 2000, Brightman and Fell [35] developed an ODE-based
mathematical model of the EGF signal-transduction pathway
in PC12 cells to investigate the factors influencing the kinetics
of ERK cascade activation. Their model consisted of 30
reactions involving 29 species (Figure 7) and includes a self-
contained module of the activation and internalization of EGFRs
induced by EGF. Through the phosphorylation of Shc, activated
receptors can then initiate an intracellular signal-transduction
pathway that results in the activation of Ras and, ultimately, a
cytosolic ERK cascade comprising Raf, MEK and ERK. Feed-
back regulation of the pathway is mediated by the inhibitory
phosphorylation of SOS, which causes the dissociation of the Shc–
Grb2–SOS complex. The kinetic constants of reactions and initial
concentrations of species were largely based on a range of
measured or estimated values published in the existing scientific
literature.

The analysis of this model indicated that negative feedback
inhibition of the ERK cascade was the most important factor
in determining whether the cascade activation was transient or
sustained, and that differences in feedback regulation were likely
to underlie the characteristic patterns of EGF- and NGF-induced
ERK activation in PC12 cells. In the model, EGF initially activates
Ras and the ERK cascade via formation of the Shc–Grb2–
SOS signalling complex. This signal is rapidly terminated through
the negative feedback phosphorylation of SOS, resulting in the
dissociation of the Shc–Grb2–SOS complex. However, the ana-
lysis showed that the dephosphorylation of SOS (reaction number
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Figure 7 Brightman and Fell [35] model diagram

This schematic representation of the Brightman and Fell model of EGF signal transduction is
taken from Figure 1 of [35]. Reprinted by permission of the Federation of European Biochemical
Societies. c© 2000. In this schema, GS represents the Grb2–SOS complex.

28 in Figure 5) was one of the most important steps in determining
the duration of the signal, and that only a 40-fold increase in
the rate of this reaction generated a time course of ERK cascade
activation similar to that observed when PC12 cells are stimulated
with NGF rather than EGF. This suggests that NGF, but not
EGF, could enhance phosphatase activity towards phosphory-
lated SOS, resulting in sustained signalling through the Shc–
Grb2–SOS complex and therefore a sustained activation of MEK
and ERK. This model drew attention to the importance of the
regulation of the Ras family proteins as critical regulators of
the kinetics of ERK signalling. An elegant and elaborate analysis
confirming and significantly extending these results was recently
presented [54], showing that the activation kinetics of Ras and its
relative, Rap1, can account for the differences in ERK activation
in response to EGF as compared with NGF.

Model 3: Schoeberl et al. [42]

In 2002, Schoeberl et al. [42] developed an ODE-based math-
ematical model describing the dynamics of the EGF signal-trans-
duction pathway to investigate the effects of receptor internaliz-
ation on the ERK cascade, and also the signal–response
relationship between the binding of EGF to its receptor at the cell
surface and the activation of downstream proteins in the signalling

cascade. Their model consists of 125 reactions involving 94
species (Figure 8), advancing model building by including two
principal pathways of Ras activation, Shc-dependent and Shc-
independent, as well as EGFR internalization by endocytosis.
Receptor internalization is comprehensively represented in the
model, with receptor species able to become internalized via two
distinct routes. The majority of kinetic parameters were based
on values published in the scientific literature, and initial concen-
trations were either compiled from the literature or based on
laboratory experiments.

This model is one of the most comprehensive available, as it
includes a large range of dynamic processes. A main conclusion
of the modelling is that it is the initial rate of change of receptor
activation that determines the cellular response to EGF. On vary-
ing the concentration of EGF, analysis of the model suggested that
the cell maintains a high sensitivity over a relatively broad EGF
concentration range and that the initial velocities of EGFR
activation, rather than the peak maxima, are important for signal
propagation. The model was also used to investigate the roles
of internalized and cell-surface receptors in generating a cellular
response, leading to the conclusion that EGFR internaliz-
ation has a dual role: (1) signal attenuation by protection from
prolonged external EGF stimulation at high EGF concentrations;
and (2) signal amplification after internalization at low EGF con-
centrations. The analysis of sensitivity showed that the model was
robust to variation in the parameters and initial conditions.

MODEL COMPARISON

It is noteworthy that, although the three models discussed above
are describing the same biochemical system, namely the EGF-
regulated ERK pathway, they are all different and yet they all seem
to be able to explain the observed data and also make interest-
ing predictions about the system’s behaviour. This leads to the
inevitable question of how is it possible for different models of
the same system to all be both correct and reliable? This is a
very important question, as the implications are enormous. Does
it condemn modelling to the realm of reproducible artefacts, or
does it demonstrate that modelling can give valid answers even in
the light of different approaches, incompleteness and imperfect
data? We do not know the definite answer yet, but all indications
point to the latter possibility. Although the three models do differ,
they do not do so to a great extent, and many of the differences
can be accounted for by simplifications and where the model
boundaries lie; a direct comparison of the size and features of the
three models is presented in Table 1.

One interesting aspect is that the Brightman and Fell [35] model
utilizes a different strategy of dealing with activated receptors
when compared with the Kholodenko et al. [60] and Schoeberl
et al. [42] models. In the Brightman and Fell [35] model, activated
receptors simply catalyse the phosphorylation of Shc. However,
the other two models utilize a more realistic receptor complex
strategy where adaptor proteins such as Shc have to bind to activ-
ated receptors and stay bound in order for the signal to propagate.
These two different strategies have led to different predictions as to
the basis of the transient signal response to EGF. In the Brightman
and Fell [35] model, Shc is phosphorylated by activated receptors,
enabling it to bind Grb2 and SOS before activating Ras and the
core ERK cascade; the Shc–Grb2–SOS complex is a functional
complex and does not need to bind to the receptor. The transient
nature of the EGF response is in part caused by the negative-
feedback phosphorylation of SOS by ERKPP (activated ERK),
resulting in the dissociation of the Shc–Grb2–SOS complex and
therefore stopping the activation of Ras and the core ERK cascade.
In contrast, in the Kholodenko [60] model, Shc followed by Grb2
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Figure 8 Schoeberl et al. [42] model diagram

This schematic representation of the Schoeberl et al. model of the EGF-receptor-induced ERK kinase cascade is taken from Figure 1 of [42] and is reproduced with the permission of Nature Biotechnology (http://www.nature.com/). c© 2002.
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Table 1 Comparison of the size and features of the selected models

This Table contains a direct comparison between the three selected models: Kholodenko et al.
[60], Brightman and Fell [35] and Schoeberl et al. [42]. The comparison criteria are defined as
follows (more details can be found in the text below): cell line, the cell line the model is based on;
reactions, the number of reactions in the model; species, the number of biochemical species in
the model; receptor complex strategy, whether adaptor proteins have to bind to the EGFR for the
signal to propagate; receptor internalization, the process of internalization of receptors from
the plasma membrane; receptor degradation, the process of degradation of internalized receptor;
Shc-dependent pathway, the pathway comprising Shc, Grb2 and SOS leading to the activation of
Ras; Shc-independent pathway, the pathway comprising Grb2 and SOS leading to the activation
of Ras (i.e. Shc not required); PLCγ pathway, the pathway comprising the reactions of the
adaptor protein PLCγ ; core ERK cascade, the Raf, MEK and ERK cascade; negative-feedback
loop, the negative feedback phosphorylation of SOS by ERKPP.

Kholodenko Brightman Schoeberl
Size or feature et al. [60] and Fell [35] et al. [42]

Cell line Rat hepatocytes PC12 HeLa
Reactions 25 30 125
Species 23 29 94
Receptor complex strategy Yes No Yes
Receptor internalization No Yes Yes
Receptor degradation No No Yes
Shc-dependent pathway Yes Yes Yes
Shc-independent pathway Yes No Yes
PLCγ pathway Yes No No
Core ERK cascade No Yes Yes
Negative-feedback loop No Yes No

and SOS bind rapidly to activated receptors, which would enable
the activation of the membrane-bound Ras and the core ERK
cascade. However, the receptor-bound Shc–Grb2–SOS complex
then dissociates and there is a build up of this unbound com-
plex. As unbound receptors are exposed to phosphatases and are
rapidly deactivated, a transient response can result without the
need for a negative feedback loop.

The boundary of a model is essentially the point or points at
which the model stops; the model does not consider and therefore
define the biological processes beyond these points. The decision
of where the boundary lies is typically determined by what bio-
logical processes and questions the model is intended to inves-
tigate and answer. A good illustration of model boundaries is
given by the comparison of the Kholodenko et al. [60] model
with the Schoeberl et al. [42] one. Both models have a similar
general structure, as they essentially have the same Shc-dependent
and Shc-independent pathways and utilize a receptor-complex
strategy. However, the Kholodenko et al. [60] model includes
the PLCγ pathway, whereas the Schoeberl et al. [42] model in-
cludes the ERK cascade and receptor internalization. This is
because the Kholodenko et al. [60] model was designed to inves-
tigate the short-term pattern of cellular responses to EGF through
EGFR and its adaptor proteins; therefore only the receptor
proximal events were included. In contrast, the Schoeberl et al.
[42] model was designed to investigate the downstream effects of
EGFR activation as well as the effects of receptor internalization
on the ERK cascade This illustrates an experimental-design
strategy for reductionism that is familiar to the biologist: depend-
ing on the question that is the focus of the investigation, the exper-
imental system is simplified in the way that is most appropriate
to address the question at hand.

Simplifications in a model can come in many forms and
typically involve the simplification of biological processes or
events to reduce the number of reactions needed in the model while
still being able to represent the biological processes well enough to
explain the observed data. The classic example of a simplification
is the activation of Raf by Ras-GTP. Ras-GTP recruits Raf from
the cytosol to the plasma membrane, where it is activated through

a still not completely known process that involves interaction with
adaptor proteins, lipids and changes in phosphorylation. However,
this complex process has been effectively represented in many
models of the ERK pathway as a simple two-step process:

Ras-GTP + Raf ↔ Ras-GTP/Raf ↔ Ras-GTP + Rafx

Rafx represents the active form of Raf. Other simplifications can
be found when examining, for example, the Schoeberl et al. [42]
model:

(1) Only one member of the EGFR family is considered

(2) EGFR dimers are considered as single molecules

(3) The binding of the adaptor proteins Shc and Grb2 to EGFR is
assumed to be competitive

(4) GAP must be bound to the EGFR before any other adaptor
proteins can bind

There may also be some biological inaccuracies in the models
discussed. In the Brightman and Fell [35] model, singly phospho-
rylated MEK is able to phosphorylate ERK; this is probably
irrelevant, as singly phosphorylated MEK species have not
been observed. Moreover, mutating one of the two phosphoryl-
ation sites in MEK abrogates activation, suggesting that only
doubly phosphorylated MEK is active [62]. In the Schoeberl et al.
[42] model there is an apparent inactive active form of Ras called
Ras-GTP∗ (species 43/71 in Figure 8). The role of this Ras-GTP∗ is
to limit the number of Raf molecules that Ras-GTP can activate to
one. However, this is probably an artificial and incorrect assump-
tion, as Ras is either active in its GTP-bound state or inactive
in its GDP-bound state. There is no ‘in-between’ situation, and
there is no evidence that the number of Raf molecules that Ras-
GTP can activate is limited (for a review of Raf activation, see
[63]). Although these are not major errors, it could be viewed
as a concern that models with apparent errors can still explain
the observed data and be used to make valid predictions about the
biological system. However, as robustness seems to be an inherent
and ubiquitous property of biological systems [64], the robustness
of the models in tolerating small errors may simply reflect the
biological property. From a pragmatic point of view, it could be
viewed as an advantage, as models, despite not being perfect, can
be used to suggest interesting new hypotheses and explanations
for the observed data that challenge our current understanding,
which is by no means complete. Importantly, these predictions
need to be verified experimentally in the laboratory.

After a model has been completed, it can easily be modified or
expanded upon and used in the development of new models of the
same or related biological systems. For example, the Kholodenko
et al. [60] model has been used as a basis for many other models
of the EGFR system [41,46,48,51]. The Brightman and Fell [35]
model has since been analysed further by Babu et al. [65], who
investigated the effects of a number of MEK inhibitors in this
system, and it was also used in the development of other models
of the ERK cascade [44,52]. The Schoeberl et al. [42] model
has since been analysed further in a number of studies [66–69];
for example, Gong and Zhao [66] investigated the relevance of
the Shc-dependent and Shc-independent pathways; it has also
been combined with data on metalloprotease activation to build a
model of autocrine signal transduction by cancer cells exposed to
ionizing radiation [70].

ALTERNATIVE RECEPTOR SYSTEMS

Although the EGFR is the most common growth-factor-
receptor system modelled together with the ERK cascade, other
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growth-factor receptors have also been successfully modelled.
Bhalla et al. [33] in 2002 developed an ODE-based model of the
PDGF (platelet-derived growth factor)-activated ERK cascade,
revealing novel and interesting design principles of this network,
in particular that ERK activation can operate in different states
depending on the history of the cell. The first application of PDGF
to a naı̈ve cell induces a bistable, switch-like ERK activation
response, where even a brief stimulus results in sustained ERK
activity. As part of this response, the expression of MKPs is
induced. Thus, when the cells are restimulated with PDGF after
the initial ERK activation has returned to baseline, there is a higher
level of MKPs in the cell, causing ERK activation to proceed
in a monostable fashion with the ERK activity increasing pro-
portionally with the dose of PDGF. In 2004, Qiu et al. [52]
developed an ODE-based model of the NGF-activated ERK
cascade and suggested that the sustained behaviour of the response
was mainly due to a continual regeneration of NGF receptors. Also
in 2004, Yamada et al. [53] developed ODE-based models of the
EGF and FGF (fibroblast growth factor)-activated ERK cascade
and proposed that the protein FRS2 (FGF-receptor substrate 2)
plays a key role in generating the sustained behaviour of the
FGF response by recruiting more SOS to the plasma membrane;
furthermore, they found that the negative-feedback system in the
model did not profoundly affect the time course of ERK activation.
In one of the most recent (2005) models, Sasagawa et al. [54]
developed an extensive ODE-based model of the EGF- and NGF-
activated ERK cascade in PC12 cells. This model is among the
most comprehensive to date, as it includes both the Ras and Rap1
pathways to ERK activation and combines theoretical predictions
with experimental validation. The model was used to investigate
how EGF and NGF encode transient and sustained dynamics of
ERK activation respectively. A salient finding was that the trans-
ient activation of ERK depended on the rate of receptor activ-
ation rather than the concentration of the growth factors. In
contrast, sustained ERK activation by NGF depended on the final
concentration of NGF, but not on the temporal rate of increase
in NGF concentration. These diverse response modes are due to
differences in Ras and Rap1 inactivation. Ras, which mediates
transient ERK activation, is inactivated by the receptor-induced
recruitment of Ras-GAP to the membrane, resulting in a stringent
temporal regulation of Ras activity. In contrast, Rap1, which in this
model is responsible for sustained ERK activation via stimulation
of B-Raf, is inactivated by Rap-GAP, which is not regulated by
growth factors, but functions constitutively. Thus the activation of
Rap1 becomes a function of the NGF concentration. In this model
the Ras and Rap1 pathways capture the temporal rate of increase
and concentration of growth factors and encode these distinct pro-
perties into transient and sustained ERK activation respectively.

ALTERNATIVE MODELLING METHODS

Although ODEs are commonly used to model biological systems
such as the ERK cascade, they have one major drawback, and
that is they are reliant on high-frequency sampling and absolute
parameter data being available, such as detailed kinetic rates
and absolute initial concentrations. However, a lot of the data
generated by biologists, including data generated from high-
throughput techniques, are not directly amenable to modelling,
as they often contains sparse time series, are qualitative rather
than quantitative, and show relative changes rather than changes
in absolute concentrations. Furthermore, as there is only very little
standardization of measurements, data from different laboratories
usually can only be compared in a semiquantitative or qualitative
fashion [16]. However, although high frequency and absolute data
is required if one wants to produce a near-exact replica of the

experimental system, it is often not necessary to know every
single parameter with high accuracy, due to issues such as variable
sensitivity. Therefore ODE-based models can readily be used
to assess whether the system is capable of showing specific
qualitative features such as oscillations. In addition, there are
also a number of techniques to estimate missing parameter data
in a model (see, for example, [18]), which typically work by
varying the missing parameters values until the expected beha-
viour is obtained. An alternative method, developed by Brown
et al. [71] in 2004, used an ensemble approach to model com-
plex signalling networks, namely the NGF- and EGF-activ-
ated ERK cascade; these models also included both the Ras
and Rap1 pathways. Instead of using kinetic parameters, which
are commonly not available, the ensemble method was used to
match the model to experimental time courses of the activities of
signalling molecules, which generates an ensemble of weighted
parameters which can then be used to analyse the model.
This model was used to evaluate the importance of different
regulatory loops in generating a sustained activation of ERK.
Furthermore, this approach suggested that only a small fraction
of parameter combinations are likely to be well constrained
and that the few well-constrained parameters reveal critical focal
points in the signalling network. Two additional approaches are
FBA (Flux Balance Analysis; [72]) and MCA (Metabolic Control
analysis; [73]). FBA is an approach to constrain a metabolic
network based on the stoichiometry of the metabolic reactions and
does not require kinetic information. MCA is a quantitative sens-
itivity analysis of fluxes and concentrations; the relative control
exerted by each step on a system variable is measured by applying
a perturbation to the step and measuring the effect on the variable
of interest after the system has settled to a new steady state. It
is important to note that FBA and MCA are essentially analyses
of the steady state and are therefore less suited to the dynamic
aspects of signal transduction; however, MCA has recently been
extended to the dynamics of signal transduction [74].

There are also a number of alternative approaches to ODEs that
can be used to model and analyse biological systems. In 2003,
Resat et al. [48] developed one of the largest models of the EGFR
system to date using a probability weighted–dynamic Monte Carlo
stochastic simulation. They developed an integrated model of both
the trafficking and signalling components of the EGFR system that
consisted of hundreds of distinct endocytic compartments and
about 13000 reactions that occurred over a broad spatio-temporal
range. The signalling component of this model consisted of the
ODE model developed by Kholodenko et al. [60], highlighting
that ODE-based models can be utilized by other modelling tech-
niques. Pi-calculus [75] has successfully been used to model
biological systems, with molecules and their domains represented
by computational processes, and reactions by communication and
rearranging the communication channels. Further developments
in this area include stochastic Pi-calculus [76] and the hybrid
system BioSPi (http://www.wisdom.weizmann.ac.il/∼biospi/).

Petri nets are another class of innovative modelling notations
used to analyse biological systems [77]. In this approach, bio-
logical networks are represented by intuitively readable, but
strictly formalized, graphical diagrams (of molecules and con-
necting reactions) that are directly subjected to algebraic analysis.
For example, in 2004, Oliveira et al. [78] constructed an
algebraic–combinatorial model of the SOS compartment of the
EGFR system by using a Petri-net approach. Extended Petri-net
approaches that incorporate both discrete and continuous state
transitions (hybrid function Petri nets) combine the powerful
simulation capabilities of differential equations with the formal
logical analysis available in the Petri-net computations [79–83].
The Biochemical Abstract Machine BIOCHAM [84,85] is a
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programming environment for modelling biochemical systems,
making simulations and querying the model in temporal logic,
which allows the behaviour of a model to be checked against bio-
logical predictions expressed in logical statements. The interface
is based on a simple language for representing biochemical net-
works. BIOCHAM provides mechanisms to reason about the
‘reachability’ of certain states, the existence of stable states and
some types of temporal behaviour (e.g. oscillations). An alter-
native algebraic modelling and analysis approach was proposed
by Calder et al. [86], where the stochastic process algebra
PEPA (Performance Evaluation Process Algebra) was used to
model the ERK signalling pathway. The main advantage of
algebraic modelling techniques such as these lies in their ability to
systematically reason over structural properties such as the inter-
action of sub-networks (for example cross-talk) and the behav-
ioural equivalence of different networks.

FUTURE DIRECTIONS

Signalling pathways have traditionally been drawn as separate
linear entities, reflecting the history of how they were discovered
rather than their functional context. However, signalling pathways
are extensively interconnected and embedded in networks with
common protein components and a multitude of links and cross-
talk between pathways. Owing to the complexity of these net-
works, computational methods are required in order to explain in
detail how they function and predict possible behaviours. Over
recent years, the computational or mathematical modelling of
biological systems has become increasingly valuable and can
provide useful information to understand their behaviour. The
ERK cascade is currently one of the most popular systems to be
modelled, as it is one of the most intensely studied signalling
pathways and has also been implicated in various diseases.
Currently, there are many differential-equation-based models of
the ERK cascade that have been used to investigate various aspects
of its biological behaviour, and these have led to some novel
insights and predictions as to how this system functions. However,
no two models appear to be the same topologically or dynamically,
as they consider different biological processes and components,
use different representations and have different kinetic properties.
Over the years, models have increased in both size and complexity.
The first (1996) model of the ERK cascade [29] only con-
sidered the core cascade itself, whereas the most recent (2005)
model [54] considered both the EGF and NGF receptors, num-
erous adaptor proteins and both the Ras and Rap1 pathways
leading to the activation of the ERK cascade, as well as numerous
feedback loops.

Coupled with the increase in the number, size and complexity
of mathematical models is an increase in the number of techniques
and software tools available to simulate and analyse them.
Although differential equation methods are currently the most
widely used, there are a number of good alternatives available and
a number of promising alternatives in development. The adoption
of some sort of unifying standard, such as SBML, for all pub-
lished models of biological systems would now be a welcome
development, enabling models to be shared and evaluated with
ease and thus eliminating the need to painstakingly recreate
models based on static tables of supplementary data and compared
with simulation graphs in papers. To this end, the BioModels
database (www.ebi.ac.uk/biomodels; [87]) was recently launched
and aims to be a curated database for the deposition of models of
biological systems in an SBML format. Similarly, the recently
founded Receptor Tyrosine Kinase (RTK) Consortium (http://
www.rtkconsort.org) is an international research effort to advance
the understanding of RTK signalling systems, including the

MAPK pathways, through a combination of mathematical modell-
ing and quantitative biological experimentation. Thus, with the
first steps accomplished, we can now expect quantitative biology
to rapidly gain momentum.

We acknowledge support through the Department of Trade and Industry Beacons Project
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88 González, P. P., Cárdenas, M., Gershenson, C. and Lagunez, J. (2001) Integration of
computational techniques for the modelling of signal transduction. In Advances in
Systems Science: Measurement, Circuits and Control, WSES Press, Athens, Greece,
pp. 400–411

89 Cho, K. H., Shin, S. Y., Kim, H. W., Wolkenhauer, O., McFerran, B. and Kolch, W. (2003)
Mathematical modeling of the influence of RKIP on the ERK signaling pathway.
Proceedings of the First International Workshop on Computational Systems Biology,
Roverto, Italy, 24–26 February 2003, pp. 127–144.

90 Chapman, S. and Asthagiri, A. R. (2004) Resistance to signal activation governs design
features of the MAP kinase signaling module. Biotechnol. Bioeng. 85, 311–322

91 Aksan, I. (2005) Kinetic analysis of RSK2 and Elk-1 interaction on the serum response
element and implications for cellular engineering. Biotechnol. Bioeng. 88, 890–900

92 Perez-Jimenez, M. J. and Romero-Campero, F. J. (2005) Modelling EGFR signalling
cascade using continuous membrane systems. Proceedings of the Third International
Workshop on Computational Systems Biology, Edinburgh, 3–5 April 2005, pp. 118–129

93 Oney, I., Kurnaz, I. A. and Kurnaz, M. L. (2005) Cytoplasmic-to-nuclear volume ratio
affects AP-1 complex formation as an indicator of cell cycle responsiveness. FEBS Lett.
579, 433–440

Received 7 June 2005/19 July 2005; accepted 28 July 2005
Published on the Internet 22 November 2005, doi:10.1042/BJ20050908

c© 2005 Biochemical Society




